
Available online at www.sciencedirect.com
www.elsevier.com/locate/actamat

ScienceDirect

Acta Materialia 78 (2014) 378–393
Plastic deformation in nanoindentation of tantalum: A new
mechanism for prismatic loop formation

T.P. Remington a, C.J. Ruestes b, E.M. Bringa b,c, B.A. Remington d, C.H. Lu a, B. Kad a,
M.A. Meyers a,⇑

a University of California, San Diego, La Jolla, CA 92093, USA
b Instituto de Ciencias Básicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina

c CONICET, Mendoza 5500, Argentina
d Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Received 26 September 2013; received in revised form 23 June 2014; accepted 25 June 2014
Abstract

The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are iden-
tified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [100], [110] and [111]
normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into
shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a
diameter below �7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops
expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the
loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction
between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a
shear loop transitions to a prismatic loop is identified for both [001] and [111] indentations. The prismatic loops advance into the mate-
rial along h111i directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimen-
tal observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter.
Dislocation densities under the indenter are estimated experimentally (�1.2 � 1015 m�2), by MD (�7 � 1015 m�2) and through an ana-
lytical calculation (2.6–19 � 1015 m�2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD
simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The origins of hardness testing can be traced back to the
19th century [1–3]. This simple method to evaluate the
strength of metals has been immensely successful, princi-
pally because of its simplicity and quasi-non-destructive
nature. The number obtained, the “hardness”, represents
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the resistance of the material to penetration, a reasonable
measure of compressive strength under lateral confinement.
Portable units to measure the hardness are available, and
hardness measurement is also very useful as a research tool,
providing a ranking of materials. The plastic deformation
under the indenter is highly heterogeneous, and attempts
to correlate the numbers obtained with fundamental mate-
rials parameters often fall short [4]. Nevertheless, the sim-
ple Tabor [5] relationship between yield stress and
hardness (ry = H/3) is often used, in spite of its limitations.
eserved.
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Nanoindentation testing has gained global acceptance
as a tool to probe the mechanical properties of materials
at the micrometer and sub-micrometer scale and the con-
tinuous load–penetration curve provides the elastic modu-
lus and hardness through the widely used Oliver–Pharr
analysis [6].

In parallel with plasticity analysis of the plastic defor-
mation under an indenter [7–10], molecular dynamics
(MD) simulations are becoming quite realistic and capture,
albeit at a much smaller spatial scale and much larger
indentation velocities, the features of the plastic deforma-
tion processes occurring under the indenter. There is a
large number of studies carrying simulations for face-
centered cubic (fcc) metals, due to the large number of
experiments for such metals, but also due to the availability
of empirical potentials for fcc metals, which behave reason-
ably well at large strains. Zhu et al. [11], Li et al. [12] and
van Vliet et al. [13] performed MD and finite element cal-
culations for fcc metals and showed that stacking-fault
loops nucleated under the indenter, not at the surface but
below it. Although there are several dislocation nucleation
criteria [11], a simple criterion based on a threshold shear
stress is often used. Indeed, the region of maximum shear
stress under an indenter is below the surface. The Hertz
lines of maximum shear stress in the compression of a flat
surface by a cylindrical or spherical indenter show this
clearly [14]. Zhong and Zhu [15] showed that nucleation,
gliding and interaction of Shockley partial dislocations in
fcc structures were involved in the early plastic stages of
indentation, and recently detailed dislocation analysis was
also carried out by Begau et al. [16] and Engles et al. [17].

Scanning tunneling microscopy and atomic force
microscopy (AFM) in ultrahigh vacuum have also been
used to characterize indentation in gold (fcc structure)
[18]. There are many related studies on Au nanoindenta-
tion [19]. Elastic and plastic indentations were identified
both in the residual impression images and by features in
their force–displacement curves such as the sink-in depth,
pop-ins and hysteresis energy but there are still many open
questions [20].

Fang et al. [21] performed MD calculations for alumi-
num and reported partial dislocations emanating from
the indentation site, with stacking faults on {111} planes.
Tsuru et al. [22] also investigated the behavior of alumi-
num, using both atomistic and microscopic models. In gen-
eral, it is often found that the necessary critical resolved
shear stresses for dislocation nucleation is higher than the
theoretical shear strength because of the compressive stress
state underneath the indenter, with load–displacement
curves showing both elastic and pop-in displacements.
Begau et al. [16] performed simulations for copper, allow-
ing the dislocations to move larger distances from the
indentation region, and observed leading and trailing par-
tial dislocations and stacking faults between them in con-
figurations fairly similar to the ones observed by
Traiviratana et al. [23] in the growth of voids in copper.
Ziegenhain et al. [24] investigated the effect of crystal
anisotropy (in Cu and Al) on the generation of partial
and perfect dislocations and observed emission of prismatic
loops below the indenter.

In one of the first MD simulations for indentation of
body-centered cubic (bcc) metals, tungsten was investigated
using a Finnis–Sinclair potential with �850,000 atoms,
[111] and [110] surfaces, and a tip diameter of 10 nm
[25]; penetration depths were limited due to the relatively
small sample size, but allowed the observation of the earlier
stages of plastic activity, often including emission of pris-
matic loops. Kumar et al. [26] recently simulated Fe, pure
and with impurities, using �1 million atoms, a 4 nm diam-
eter indenter and velocity of 100 nm ps�1, showing that slip
occurs in {110}, {112} and {123} planes, as expected
from bcc crystal symmetry.

Alcalá et al. [27] described dislocation structures under
nanoindentations in tantalum crystals using the potential
by Li et al. [28], and presented experimental loading curves
for [001], [011] and [111] surfaces. They found that
(indent depth)/(indenter diameter) � 0.2 gave a reasonable
value for the first pop-in event in both simulations and
experiments. They reported the generation of stacking
faults and twins directly under the indenter as well as dis-
location loops; twin nucleation and interaction as well as
annihilation produced these loops. Their load–penetration
curves showed a marked elastic–plastic transition in line
with their experimental measurements for [100], [110]
and [111], which exhibited an elasto-plastic pop-in corre-
sponding to the emission of the first dislocations. The lead-
ing edges of the loops were of edge character and the
trailing parts were screw dislocations. Twin annihilation
was attributed to reduction of stacking fault energy for
twin layers thinner than four atomic layers and found to
be enhanced at higher temperatures and decreased loading
rates. Sectional views showed the progressive development
of dislocation loops and their interactions.

It should be mentioned that most indentation studies are
either computational or experimental. The investigations
conducted by Alcalá et al. [27], Lodes et al. [29] and Sadra-
badi et al. [30] on CaF2 are rare exceptions. Since this crys-
tal is amenable to etch pitting, Lodes et al. [29] were able to
quantitatively estimate dislocation densities under the
indenter and compare them with MD predictions. The
molecular dynamics predictions essentially confirmed ear-
lier experimental results [30]: dislocation density decreased
with penetration depth consistently with a decrease in
hardness due to increasing load.

The objective of this contribution is to provide a com-
bined computational–experimental–analytical study lead-
ing to a quantitative knowledge of the mechanisms of
plastic deformation under the indenter for a model bcc
metal, tantalum. Below we first describe experimental and
computational methods, then present loading curves and
AFM images of the indented surfaces. We present simu-
lated loading and unloading curves, describing in detail
the formation of prismatic loops during loading by a new
“lasso” mechanism and present a dislocation-based model



Fig. 1. Load vs. penetration for three orientations of monocrystals [100],
[110] and [111]. Hardness is equal to 3.5, 3.5 and 5 GPa for the three
orientations, respectively. The plastic plateau occurs at loads between 60
and 200 lN.
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for that loop formation. Finally, we present simulated pile-
ups for different surface orientations and show dislocation
densities from experiments, an analytical model and MD
simulations.

2. Experimental and computational methods

2.1. Experimental materials and procedures

All tantalum single crystals were received after being
mechanically and electromechanically polished by Surface
Preparation Laboratory (a company in the Netherlands)
to attain a surface roughness less than �1 nm. Load con-
trolled nanoindentation experiments were performed using
a Ubi 1 nano-mechanical test instrument (Hysitron, Inc.,
Minneapolis, MN) equipped with a diamond Berkovich
tip having a �100 nm nominal radius of curvature. For
each Ta sample, two grids of 10 � 10 indentations were
made, one using a loading rate of 30 lN s�1 with a maxi-
mum load of 150 lN, and the other with a loading rate
of 200 lN s�1 and a maximum load of 1000 lN. Values
of hardness and reduced modulus were calculated from
load–displacement curves using the Oliver–Pharr method.
Prior to performing each indentation, drift was digitally
monitored for 40 s and found to be less than 0.1 nm s�1.
All tests were performed at 20 �C in an environmental
chamber on an active vibration isolation table.

2.2. Computational methods

MD simulations were done using a large-scale atomic/
molecular massively parallel simulator (LAMMPS) [19].
Indentation was carried out using a rigid spherical indenter
tip [31]. Although the Berkovich tip is typically used in
nanoindentation studies, it should be noted that such an
indenter has a rounded tip of up to 150 nm; therefore, it
can be expected that the spherical tip used in our studies
renders the same plasticity mechanisms produced by a Ber-
kovich tip prior to significant effects produced by the pyra-
midal planes. Simulated box size, and tip diameter and
velocity, were varied within the limits allowed by our com-
putational resources, to ensure our results were not affected
by finite-size effects or indentation rate. A detailed para-
metric study will be published separately, since here we
are focusing on large-scale load and unload simulations
to understand prismatic loop formation and pile-ups.

We used an indenter diameter of 25 nm for the [001]
surfaces, and 20 nm for [011] and [111] surfaces. Changing
indenter diameter in the range of 10–25 nm did not change
the qualitative features of our description below. The MD
simulation domain had dimensions of 90 � 90 � 66 nm3

(�30 million atoms) with an indenter of 25 nm diameter
for indentation of the [00 1] surfaces; 50 � 50 � 40 nm3

(�6 million atoms) for indentation of the [01 1] surfaces;
and 50 � 50 � 40 nm3 (�6 million atoms) for indentation
of the [111] surfaces. These sizes are larger than usual in
most current indentation simulations, and ensure that the
plastic region is properly contained within the simulated
volume. It is customary to expect a plasticity zone of up
to 3.5 times the radius of the indentation imprint, as a
worst-case scenario [32]. As a further check at the end of
our simulations, we verified that our box size for the
[00 1] indentation is six times the radius of the imprint in
the z direction and eight times the radius of the imprint
in the x and y directions.

Indentation was carried along the z direction, and peri-
odic boundary conditions were applied in x–y directions.
The sample was energetically minimized and equilibrated
at 300 K and a Langevin thermostat was applied to the
sides and bottom of the domain in order to dampen possi-
ble boundary effects. Unlike nanoindentation experiments,
in which the test is performed in what is called load-control
mode, MD simulations are typically done in displacement
controlled mode by applying a constant penetration rate
to the indenter [31].

An indentation velocity of 34 m s�1 was used, compared
to 100 m s�1 in Kumar et al. [26], 20 m s�1 in Lodes et al.
[29] and 40–0.004 m s�1 in Alcalá et al. [27]. This velocity
is �1% of the bulk sound velocity [31,33], and considered
sufficiently low to minimize dynamic effects. Reducing the
indentation velocity to 3.4 m s�1 did not produce any qual-
itative change in loading curves and plasticity, but lowered
slightly the plastic threshold, as expected. Quasistatic sim-
ulations as in Hagelaar et al. [25] might lead to somewhat
different results. Of course, simulated speeds are orders of
magnitude larger than experimental values, and there



Fig. 2. Nanoindentation of (100), (110) and (111) Ta single crystals using a Berkovich tip at a load of �1000 lN. AFM shows plastic deformation pile-
ups around the edges of the nanoindentations, the lighter colors around the perimeter corresponding to pile-ups: (a, b) AFM image and depth profile of
(100) Ta showing pile-ups around its perimeter with an average pile-up height hp � 6 nm; (c, d) AFM image and depth profile of (110) Ta showing pile-
ups around its perimeter with an average pile-up height hp � 5 nm; (e, f) AFM image and depth profile of Ta (111) Ta showing pile-ups around its
perimeter with an average pile-up height hp � 8 nm. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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might be effects due to the high strain rate of every MD
simulation, for instance in dislocation–twinning competi-
tion [34].

It is challenging to develop empirical potentials for bcc
metals which would work at the large strains and stresses
reached in indentation simulations [35]. Here we used a
recently presented embedded atom method potential by
Ravelo et al. [36], which has been specifically designed to
work at high stress and describes well the elastic properties
of Ta up to high pressures, alongside properties associated
with plasticity, like shear stress–strain curves and gamma
energy curves [36]. This potential has been recently shown
to describe extremely well the microstructure induced by
high pressure loading of Ta [32].

Defective structures were filtered by means of common
neighbor analysis [37] and visualized by means of OVITO
[38]. Dislocation line lengths were computed using the dis-
location extraction algorithm (DXA) [39], and dislocation
density can then be defined for a given volume containing
those dislocations.



Fig. 3. TEM image of defects generated under nanoindented region for
[100] crystal; dislocations imaged in two-beam conditions. Greater
dislocation density below the apex of the penetration is clearly seen.
Some damage due to ion beam sample processing is evident in regions far
from indentation sites (shown by black arrow).

Fig. 4. TEM image of dislocation loops under a nanoindentation in [111]
Ta crystal. The deflection in the surface due to nanoindentation shown by
arrow. Loops are clearly seen under, and around, the indentation
perimeter.
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2.3. Experimental sample characterization

The nanoindented surfaces were observed by scanning
electron microscopy (SEM) to identify the location of the
nanoindented matrices. A FEI XL30 ultrahigh-resolution
(UHR) SEM was used at the Nano3 facility in the Univer-
sity of California, San Diego, with a resolution of �1 nm
possible at 10 kV or higher and 1.7 nm at 1 kV. Subse-
quently, AFM was used to image the surface profiles of
the pile-ups and indentation depths. A Veeco scanning
probe microscope with a 125 � 125 lm non-magnetic scan-
ner and 5 lm vertical range was used, operating in the tap-
ping mode and scanning the samples topographically. The
AFM tips used were aluminum coated NCHR silicon with
a thickness of 4 lm, length 125 lm, width 30 lm, reso-
nance frequency of 320 kHz and force constant of
42 N m�1. The specimens for transmission electron micros-
copy (TEM) were prepared by focused ion beam (FIB)
milling. FIBing was conducted at two facilities: University
of California, Los Angeles and Oak Ridge National Labo-
ratory (ORNL). The Nanoelectronics Research Facility
(NRF) at UCLA uses a Nova 600 SEM/FIB system to
produce TEM foils. The FIB has a 10 nm resolution and
five-axis stage with 150 mm travel. The Shared Research
Equipment User Facility (ShaRE) at ORNL uses a FEI
Nova 200 dual-beam SEM/FIB system, with 7 nm resolu-
tion capability. Samples were coated with platinum before
milling. TEM foils were cut using FIB milling perpendicu-
lar to the surface of the specimen, each foil containing two
to three cross-sections of nanoindentations. Foils were cut
to a thickness of �50 nm. Observation was carried out at
the ORNL ShaRE facility using a Philips CM200-FEG
TEM-STEM in the two-beam condition.

3. Results and discussion

3.1. Experimental measurements and characterization

During the nanoindentation process, the applied load
and corresponding indentation depths were recorded for
each individual indent. From these data an average load
vs. indentation depth profile was obtained for all three ori-
entations [100], [110] and [111] of Ta. Fig. 1 shows the
elastic Hertzian curve and the loads at which the different
orientations transition into plastic deformation. The first
emission of dislocations (“pop-in”) marks the beginning
of significant deviation from the elastic Hertzian curve.
Tantalum orientations [100] and [110] transition from
the elastic to plastic regime at a lower load of �150 lN
than orientation [111], which transitions from elastic to
plastic deformation at a load of �200 lN. These load–dis-
placement (F–h) curves are similar to the ones in the work
done by Biener et al. [40] and by Alcalá et al. [27] for the
same orientations.

After completing nanoindentation, AFM images were
taken, showing plastic deformation pile-ups around the
edges of the indentations. The AFM image for Ta [100]
done by Biener et al. [40] using a Berkovich tip correlates
well to our AFM results, Fig. 2a. Fig. 2c and e shows the
pile-ups for [110] an [111]. Due to the Berkovich tip geom-
etry the pile-ups form around the perimeter of the nanoin-
dentation. Biener et al. [40] used a spherical indenter tip for
nanoindented Ta [10 0], and observed four pile-ups form-
ing along the diagonal h11 0i orientations. The pile-ups
observed with the Berkovich indenter are primarily dic-
tated by the pyramid faces and not by the anisotropy of
plastic deformation of the crystal. The vertices of the trian-
gular indentation are fairly flat, while the sides rise to
account for volume conservation.

Depth profiles of the indentations were obtained and
typical depth profiles of a nanoindentation showing



Fig. 5. MD simulation of overall evolution of defects (removing perfect atoms) in nanoindented [100] crystal: (a) at a penetration of 1.8 nm, initial loops
are clearly seen; (b) at 2.5 nm the loops are evolving and interacting; (c) prismatic loop formation at 3.2 nm; (d) generation of successive generations of
prismatic loops with continued penetration at 4 nm. The color scheme from red to blue qualitatively designates depth variation, with blue being furthest
from surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Evolution of shear loops into a prismatic loop by cross-slipping and pinching off of screw components for [100] indentation. The color scheme
from red to blue designates the distance of defects from the nanoindentation site. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. Evolution of shear loops into prismatic loops by cross-slipping and pinching off of screw components, in a “lasso” action during [001] indentation:
(a) shear loop emission; (b) cross-slip of screw components to different slip planes and curvature formation at edge component of loop; (c–e) continued
cross-slip of screw components as edge components advance, in a “lasso” action, pinching off a loop; (f) release of additional prismatic loop and retraction
of shear loop. The color scheme from red to blue qualitatively designates depth variation, with blue being furthest from surface. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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pile-ups at the surface perimeter of the indents are shown in
Fig. 2b, d and f. The pile-up heights are largest in the mid-
dle of the face and smallest at the vertices. The average pile-
up height around the nanoindentations for all three single
crystal orientations [100], [110] and [111] is within the
range of hp = 5–8 nm for a load of �1000 lN.

FIB was used to cut and polish samples for TEM char-
acterization from the center portion of an indentation and
immediately analyzed under TEM double tilt condition.
TEM images were taken at indentation sites as well as
far away from the nanoindentations. Dislocations densities
under and around the nanoindentations were calculated
from TEM images using the linear intercept method. Figs. 3
and 4 show a cross-sectional area of a nanoindentation for
[100] and [111] Ta, respectively. The average dislocation
density under the nanoindentation for the [10 0] crystal
was calculated to be (1.2 ± 0.5) � 1015 m�2. This disloca-
tion density was calculated for a two-beam condition in
which the largest possible number of dislocations was
imaged. Density was calculated by using a rectangular grid
and obtaining the number of intercepts in an area of
235,200 nm2. The volume was calculated assuming a thick-
ness of 50 nm for the TEM foil, the specified thickness dur-
ing the FIB process. FIBing was attempted directly at the
center of each nanoindentation; however, it is a very diffi-
cult process, resulting in TEM foils with segments of inden-
tations a little off from its center. This is the case for Fig. 4,
and it can be seen that the indentation is significantly smal-
ler than the one shown in Fig. 3. Therefore, the calculated
dislocation density for this specimen would be somewhat
speculative. Defects due to FIB milling do include point
defects (interstitials, vacancies), dislocations and inclusion
of amorphous material into the TEM foil, but the exact
value for these defects is not known for tantalum and many
other materials. In light of the possibility of the FIB pro-
cess adding defects into the TEM foil, a reference FIB sam-
ple was cut far away from the nanoindentation sites and
compared to a FIB cut taken right at an indentation. Using



Fig. 8. Dislocation evolution leading to “lasso” loop formation with generation of prismatic loop by successive cross-slip of screw components along
planes sharing the same [111] slip direction, during [111] indentation: (a) shear loop emission; (b) cross-slip of screw components to different slip planes
and curvature formation at edge component of loop; (c–e) continued cross-slip of screw components as edge components advance, in a “lasso” action; (f)
attraction of screw components and pinching off of loop; (g) release of prismatic loop and retraction of shear loop.
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the reference sample as a basis for identifying FIB-induced
defects, the dislocation density calculated right under the
nanoindentation did not include dislocations introduced
possibly by the milling process.

3.2. Atomistic modeling of plasticity

The evolution of dislocations under the indenter is
shown in the sequence of Fig. 5 for a (001) surface. It pro-
ceeds by initial formation of planar defects in a manner akin
to that described by Alcalá et al. [27]. The use of the Ravelo
potential [33,36] in the current calculations, instead of the Li
et al. potential [28] applied by Alcalá et al. [27], results in
smaller twinned regions. The twins are {112} twins, as
expected for bcc metals under compressive stress. However,
the overall evolution is similar. We note that twinning often
appears under high strain rate conditions, and the twinning
observed in our simulations might not appear for indent
velocities approaching experimental values, which are out-
side the reach of current large scale atomistic simulations.

Shear loops form and propagate along the expected
h111i slip directions. Two of the four directions are
marked in Fig. 5. The shear loops expand by the advance
of the edge components, while the screw components can,
and do, undergo limited cross-slip. This cross-slip of the
screw components eventually leads to a pinching off action,
which produces prismatic loops. It is noted that the edge
components cannot cross-slip.

In order to focus on the formation of the prismatic loops
in detail, a section of the sample was isolated and is shown
in Fig. 6. The screw components are straight whereas the
edge component forms the front of the loop. As the edge
component advances, the screw components cross-slip
and eventually re-encounter each other (Fig. 6e), canceling
in the process (Fig. 6f). Thus, a prismatic loop is formed.

A similar evolution was observed for indentation along
[111]. The shear loops in Fig. 7a propagate with a Burgers
vector of b/2[111]. The screw components of the loops are
perpendicular to the surface. One of these loops undergoes
the “pinching-off” of a prismatic loop through the cross-slip
action of the screw components as the edge component
advances. In Fig. 7d, a loop is pinched off. The formation
of two prismatic loops is shown in Fig. 7f. As the indenter
penetrates into the sample, additional prismatic loops are



Fig. 9. Triangular, hexagonal and dodecahedral prismatic loops forming in bcc metals (Figs. b and d from Ref. [34]). The color scheme from red to blue
designates the distance of defects from the void surface location. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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formed along this and other orientations. It should be noted
that Hagelaar et al. [25] also observed prismatic loop punch-
ing during loading for the [111] indentation, and associated
the loop formation with shear in their atomistic indenter.

The process of deformation under the indenter is sche-
matically rendered in Fig. 8 for a generic [111] direction.
The initial formation of one single loop having a [111] slip
direction (Fig. 8a) is followed by cross-slip of the screw com-
ponents as the front advances (Fig. 8b–e). Two families of
slip planes having a common [111] direction contribute to
this: {110} and {211}. The screw components, in a “lasso”

action, close into form a circular edge front. The attraction
between the opposite screw segments is due to the fact that
the dislocation lines have opposite signs, while their Burgers
vectors are parallel. In Fig. 8f, the two screw components of
the loop attract each other and cancel. This leads to the
pinching-off effect, which is complete in Fig. 8g, marking
the full emission of a prismatic loop taking an almost circu-
lar shape. This prismatic loop subsequently advances, and
the process repeats itself as deformation proceeds.
In this study, all the observed prismatic loops had
shapes that were close to circular. The shear loops that
gave rise to the prismatic loops, on the other hand, were
approximately rectangular, with two lateral components
composed of screw dislocations, and the advancing front,
which had some curvature, composed of dislocation seg-
ments of primary edge character. However, if fewer slip
planes are involved, the prismatic loops can have triangular
or hexagonal shapes. This is shown in Fig. 9a,b for a trian-
gular loop and Fig. 9c,d for a hexagonal loop. Fig. 9e,f
shows a loop that is close to circular formed by cross-slip
in both {11 1} and {112} planes. It has 12 sides. Indeed,
this was observed in MD simulations by Tang et al. [34]
for the growth and collapse of nanoscale voids in Ta.
Fig. 9c from Tang et al. [34] does show the final stages of
the pinching-off leading to the lasso loop formation. It is
interesting to notice that Fig. 6 of Lodes et al. [29], shows
something indicative of a lasso mechanism for a cubic ionic
crystal, with an incomplete lasso (loop marked 1) that has
evolved into a prismatic loop in 2.



Fig. 10. Formation of pile-up in indentation along [001]: (a) loops
forming along four {111} directions (inclined, top, and side views of pile-
up; (b) top view of the residual pile-up after indenter removal. The pattern
is in agreement with AFM experimental results and corresponds to the
activation of four {111} systems; (c) side view of the pile-up. The summits
are located in a height range from 2.5 to 4.5 nm. The color scale in (b) and
(c) range from blue, sample surface, to red, pile-up summit. (For
interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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As the plastic deformation region below the indentation
develops, a pile-up is formed due to volume conservation.
The volume displaced by the indenter is partially extruded
upwards. This pile-up region is also experimentally
observed (see Section 3.1). The pile-up follows the corre-
sponding symmetry of the crystal slip. For instance, for
[001] indentation, there are four h11 1i slip directions lead-
ing to four-fold symmetry of the surface pile-ups. Fig. 10a
shows a top view of the sample, with the four directions of
loop emission indicated, and the pile-ups shown in
Fig. 10b. The side view of the pile-ups is shown in
Fig. 10c. The height of the pile-ups, hp, is between 2.5
and 4.5 nm, as shown in Fig. 10c.

Similar evolution of dislocations leading to prismatic
loop formation was observed for the [011] and [111] orien-
tations, as shown in Fig. 11. The geometry of pile-ups is the
same as predicted by crystal plasticity finite element model
(FEM) simulations [41]. Those simulations give perfectly
symmetric pile-ups, while MD gives some asymmetry due
to small thermal and stress fluctuations. In addition to pris-
matic loops, “half loops” attached to the surface are mov-
ing away in Fig. 11a. These are loops that moved along the
surface, which absorbed part of the loops without pinning
them. Something similar was observed by Lodes et al. [29],
for different planes, but with a similar mechanism.

3.3. Plasticity nucleation model

There are many studies on plasticity initiation using sim-
ulation and models [12]. We recreate here a simple model
to apply to our simulations. Plastic deformation, as men-
tioned earlier, does not start at the surface, but below it.
At first, this seems counter-intuitive. However, the MD cal-
culations show that the maximum shear stress is not at the
surface but below it [12]. Fig. 12a shows that the emission
of planar defects starts below the surface. The maximum
shear stress regions are marked in Fig. 12b and show that
the maximum value (�10 GPa) is at z � 0.5a, where a is the
radius of the imprint. This can be corroborated by Hertz’s
calculations [42], as will be demonstrated below. The stres-
ses below a rigid sphere pressing against a plate have been
calculated by Hertz. The principal stresses under the inden-
ter are:

r1 ¼ �F 1� jfaj tan�1 1

jfaj

� �� �
ð1� tÞ � 1

2ð1þ n2
aÞ

( )
ð1Þ

r2 ¼ �
F

1þ f2
a

where

fa ¼
z
a

ð2Þ

This is a normalized distance. The maximum shear stress
is:

smax ¼
r1 � r2

2
ð3Þ
According to the Hertz analysis for a rigid sphere of
radius R (acting against a plate with Young’s modulus E

and Poisson’s ratio t), a is given by:

a ¼ 3

8

ð1� t2Þ
E

2RF
� �1=3

ð4Þ

where R is the sphere radius and F the force applied on the
plate [43]. Fig. 12c shows the variation of the maximum
shear stress divided by the pressure P (equal to the force
F divided by the contact area) for tantalum, as a function
of depth z, normalized to a (z/a = f). It can be seen that
it reaches a maximum at a depth f � 0.66, from the Hertz-
ian equations. The results of MD are similar, giving



Fig. 11. Formation of loops and pile-ups for indentation (loading) along (a) [011] and (b) [111]: (a) top view of complete loops forming along [1�1�1]
and [1�11] directions; half loops forming on [11�1] and [�1�11] directions which are contained in (011); (b) top view of complete loops forming along
[11�1], [�111] and [1�11] (loops forming in [111] not seen). (c, d) pile-ups for loading in [011] and [111]. The color scale in (c) and (d) ranges from blue,
sample surface, to red, pile-up summit at 1.5 nm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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f � 0.5. The value of the critical stress is (0.28G) � 19 GPa
using G = 69 GPa for the Ravelo potential [33,36]. This is
nearly twice the MD value. Given the simplicity of the
model, this difference is still reasonable.

3.4. Analytical model for the transition from twins to perfect

dislocations

Plastic deformation initiates by the formation of twins.
Upon expansion, they generate perfect dislocations. This
was also observed by Tang et al. [34] and Alcalá et al.
[27], and is also shown in the sequence of Fig. 13. We pro-
vide below an energetic argument for this transition. It is
based on the classic equation for the critical size of a shear
loop as a function of the applied shear stress. The treatment
is given by Hull and Bacon [43] and was extended to perfect
dislocations and stacking faults by Meyers et al. [44].

We consider two alternative scenarios: the nucleation of
a shear loop of dislocations with b/2h111i and the nucle-
ation of a three-layered twin with three twinning disloca-
tions b/6h111i. They are shown in Fig. 14a and b,
respectively, and produce the same amount of displace-
ment. The energy of a perfect dislocation loop of radius r

can be obtained in a simplified manner assuming that one
half (pr) has screw character and the other half edge char-
acter. Making a cutoff at 2r, we have:

Eel ¼
rGb2

4
1þ 1

1� t

� �
ln

2r
r0

ð5Þ

where r0 is the core radius. The work done by the forma-
tion of the loop is:

W ¼ sbpr2 ð6Þ
The total change in energy is:

DE ¼ Eel � W ¼ rGb2

4
1þ 1

1� t

� �
ln

2r
r0

� sbpr2 ð7Þ

Taking the derivative of the total energy and making it
equal to zero gives the critical radius:

@DE
@r
¼ 0 ð8Þ



Fig. 12. (a) Initial stages of plasticity below indenter; (b) shear stress under indenter, just before nucleation of defects; blue indicates maximum shear, just
below the surface at the contact point; (c) Hertzian calculation of normalized maximum shear stress, smax/P, as a function of normalized depth, Ba = z/a.
Maximum for z � 0.66a. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Formation of planar defects and their evolution into perfect dislocation loops as they expand. (a) Planar faults are shown with a radius of �5 nm.
As they expand, they react, forming perfect dislocation loops in (c) and (d). Penetration depth h marked at top of each figure. The color scheme from red to
blue designates the vertical distance of defects from the nanoindentation site. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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rc ¼
Gb
8ps

2� t
1� t

� �
ln

2rc

r0

� �
þ 1

� �
ð9Þ

Repeating the procedure for a twin, we have to add a
term to account for the two twin boundaries formed, with
energy per unit area equal to cT:

DE ¼ 3rGbT

4

2� t
1� t

� �
ln

2rT

r0

þ 2pr2cT � 3sbT pr2
T ð10Þ
The Burgers vector of the partial dislocation is bT and
the twin-boundary energy is cT. Through the application
of Eq. (8) this leads to:

rcT ¼
3Gb2

T

8pð3sbT � 2cT Þ
2� t
1� t

� �
ln

2rcT

r0

� �
þ 1

� �
ð11Þ

The critical radius is rcT. Fig. 14c shows a plot of the
critical radii for twin and shear loop formation as a func-
tion of the applied shear stress. As the shear stress



Fig. 14. Analytical model for the nucleation of (a) dislocation loop and (b) twin, under the effect of shear stress s; (c) critical radius as a function of applied
shear stress for dislocation loop and twinning. There is a transition at r = 3.6 nm, somewhat smaller than found in MD simulations, possibly due to kinetic
effects.

390 T.P. Remington et al. / Acta Materialia 78 (2014) 378–393
increases, the critical radii decrease. However, the two
curves cross each other. The twin-boundary, 0.16 J m�2,
energy is taken from Ravelo et al. [33,36]. Gu et al. [45]
reported values using model-generalized pseudopotential
theory of 0.165 and 0.217 J m�2. For the calculations, we
use: cT = 0.2 J m�2; G = 69 GPa; b = 0.286 nm; and
bT = 0.095 nm. For the sake of comparison only, the
grain-boundary energy for a random boundary in tantalum
is roughly cGB = 0.8 J m�2, approximately one third of the
free surface energy [42]. It is interesting to observe that
there is a transition from twinning to shear loop formation
for rcT = 3.6 nm. This is consistent with the MD results of
Fig. 13 because the critical size observed by MD is a 5 nm
radius. The above is a purely energetic argument and does
not take kinetics into account. For instance, delayed kinet-
ics might explain that MD planar defects just before the
transition are somewhat larger than model predictions.
Still, this transition happens within tens of ps in our simu-
lations, and might be even faster at lower strain rates,
where dislocations generally dominate over twinning.

Fig. 15a shows the load–penetration curve obtained by
MD. The absence of a horizontal plateau corresponding
to the first pop-in, with the emission of the first dislocations
(present in Fig. 1) is due to the fact that MD simulations
are displacement-controlled, whereas nanoindentation
experiments are load-controlled. Nevertheless, it is possible
to identify the sequence of events observed in MD, starting
from the first emission of planar defects at a load of
�1.3 lN. There is a significant difference in the radius of
the MD penetrator (25 nm) and the experimental (greater
than 150 nm). The load vs. penetration curves for three
crystal orientations are shown in Fig. 15b. The radius of
the indenter is smaller (10 nm) than in Fig. 15a and there-
fore direct comparisons cannot be made. The [001] crystal
has the highest “pop-in” load.

There are significant differences with the measured
curves; the “pop-in” loads in Figs. 1 and 15b are different
by a factor of 100: the plastic plateau occurs at loads
between 60 and 200 lN in Fig. 1 and the onset of plasticity
takes place between 0.6 and 2 lN in Fig. 15b. The computed
hardness from MD is consequently much higher than the
experimental one: 13.3 GPa vs. 3.5 GPa. This can be attrib-
uted to several causes, including the existence of disloca-
tions in the experimental materials, differences in strain
rate, scale effects and the difference in the radius of indenter
(10 nm in the MD calculations and �100 nm in the experi-
mental measurements). For instance, Comley et al. [46]
experimentally showed a large increase in Ta strength with



Fig. 15. (a) MD load–penetration curve for loading and unloading. Target contains �30 million atoms; radius of indenter: 20 nm; velocity of penetration:
34 m s�1. As the pop-in event takes place, the onset of plasticity occurs with the nucleation of planar defects, as identified by Tang et al. [34] and Alcalá
et al. [27]. Plasticity continues with the expansion of shear loops, which later interact and form prismatic loops. After each emission of prismatic loops,
shear loops develop and evolve, again interacting and producing a new set of prismatic loops. Hardness was calculated to be 13.3 GPa, much higher than
the experimental value for [100] of 3.5 GPa; (b) load vs. penetration curves for [001], [011] and [111] for a smaller sample (6 million atoms) and indenter
radius (10 nm).
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strain rate [46]. Despite these differences, similar to the ones
obtained by Alcalá et al. [27], we find that the ratio of pen-
etration depth to indenter radius at which the first pop-in
occurs is �0.2 for both simulations and experiments.

3.5. Calculation of dislocation densities

Ashby’s concept of geometrically necessary dislocations
[47] was applied by Nix and Gao [7] to derive an indenta-
tion size effect model in which the plastic deformation of
the surface was correlated to the emission of dislocations
from the surface. It assumes that they are contained in a
hemispherical of radius R1, and volume V, below the
indented region. This is shown in Fig. 16.

For a conical indenter:

tan h ¼ h
a
¼ b

s
ð12Þ

where h is the angle of the indented surface, a is the radius
of the imprint and h is the residual plastic depth. The
number of geometrically necessary dislocations is h/b,
where b is the Burgers vector in the two-dimensional geom-
etry and s is the spacing between individual slip systems on
the indented surface. The Burgers vector in the two-
dimensional geometry is related to bh111i by the cosine of
the angle between [10 0] and [111]: 1=

ffiffiffi
3
p

. If k is the total
length of the dislocation loops injected, then in a differen-
tial ring of radii r and r + dr, one obtains:

dk ¼ 2pr
dr
s
¼ 2pr

h
ba

dr ð13Þ

yielding a total loop length of

k ¼ 2p
h

ba

Z a

0

rdr ¼ r
ha
b

ð14Þ

The hemispherical volume, as defined by Nix and Gao
[7], is a function of the contact radius

V ¼ 2

3
pa3 ð15Þ

The density of geometrically necessary dislocations then is:



Fig. 16. Schematic showing geometrically necessary dislocations forming under nanoindentation: (a) treatment as in Nix and Gao [7] for a conical
indenter; (b) terraces due to dislocation slip; (c) treatment as in Swadener et al. [48] for a spherical indenter, using expanded volume.
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qGND ¼
k
V
¼ 3h

2ba2
¼ 3

2bh
tan2 h ð16Þ

This model was later extended by Swadener et al. [48].
Later, Durst et al. [49] found that the hemispherical plastic
volume is in fact larger than this prediction. They defined a
factor, f, ranging from 1 to 3.5, that increases the volume
and hence reduces the density of geometrically necessary
dislocations:

V ¼ 2

3
pðfaÞ3 ð17Þ

qGND ¼
k
V
¼ 3h

2ba2f 3
¼ 3

2bhf 3
tan2 h ð18Þ

For an experimental indentation depth of 100 nm and
an initial f = 1, Eq. (18) yields a density of geometrically
necessary dislocations equal to:

qGND ¼ 1:9� 1016 m�2

Choosing f = 1.9 after Durst et al. [49], the achieved
density of geometrically necessary dislocations is:

qGND ¼ 2:6� 1015 m�2

This value is very close to the dislocation density mea-
sured from TEM: (1.2 ± 0.5) � 1015 m�2. It must be
pointed out that the factor f can vary in the range of
1–3.5, corresponding to qGND in the range of 1.9� 1016 m�2 to
3.9 � 1014 m�2. To compare with experiments and the ana-
lytical models, the dislocation lengths in our simulations
were computed by means of the DXA [39]. Using the
DXA [39], one can then choose a given volume containing
those dislocations to obtain dislocation densities. Using the
same f factor, f = 1.9, the radius of the chosen hemispher-
ical volume is 31 nm, for the sample after unloading (resid-
ual depth 6 nm). This radius of the hemispherical volume
guarantees that all the dislocations are contained within
the chosen volume, and this is less than half the box depth.
The resulting dislocation density is q = 7 � 1015 m�2. This
value might decrease due to thermally activated dislocation
reactions, at times much longer than what can be covered
by MD simulations. Thus, considering the uncertainties
of measurement and calculations results for experiment,
model and simulations are in good agreement.
4. Summary and conclusions

We present a multi-approach study of nanoindentation
of tantalum as a model bcc metal, using experiments,
MD simulations and analytical models. Our results can
be summarized as follows:

� Experimental loading curves for [001], [011] and [111]
indentation directions show distinct pop-ins where the
material is deformed plastically. Atomic microscopy
scans image the dislocation pile-ups which occur at these
pop-ins on the loading curves for all three orientations.
� Large-scale MD simulations show plastic deformation

starting with twins, which transform into shear loops,
which in turn transform into prismatic loops. The tran-
sition from planar faults to dislocations is explained by
an analytic energetic model, which agrees well with MD.
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� A new mechanism for the transformation of an expand-
ing shear loop into a prismatic loop is identified by MD.
The screw components of the shear loop cross-slip and
pinch out a prismatic loop in a “lasso” action.
� The geometrically necessary dislocation densities calcu-

lated from the three methods are in reasonable agree-
ment. Analytical calculations predict a density in the
range 2.6 � 1015–1.9 � 1016 m�2; for MD the predicted
value is q = 7 � 1015 m�2. Calculations from experimen-
tal TEM images show a dislocation density of
1.2 � 1015 m�2. The higher simulation value might be
due to lack of thermally activated recovery in MD.
� Simulated pile-ups for [001], [011] and [111] follow

crystallographic orientations and form on the diagonal
h110i orientations. The average experimental pile-up
height for Ta [100] is hp = 4–7 nm for a penetration
depth of 30–35 nm. The height of MD pile-ups is
hp = 2.5–4.5 nm for a penetration of 8 nm.
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